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Abstract. A phenomenological investigation of the endogenous and exogenous dynamics in the fluctuations
of capital fluxes is carried out on the Chinese stock market using mean-variance analysis, fluctuation
analysis, and their generalizations to higher orders. Non-universal dynamics have been found not only in
the scaling exponent α, which is different from the universal values 1/2 and 1, but also in the distributions
of the ratio η = σexo/σendo of individual stocks. Both the scaling exponent α of fluctuations and the Hurst
exponent Hi increase in logarithmic form with the time scale ∆t and the mean traded value per minute
〈fi〉, respectively. We find that the scaling exponent αendo of the endogenous fluctuations is independent
of the time scale. Multiscaling and multifractal features are observed in the data as well. However, the
inhomogeneous impact model is not verified.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.75.Da Sys-
tems obeying scaling laws – 05.45.Df Fractals

1 Introduction

Complex systems are ubiquitous in natural and social sci-
ences. The behavior of complex system as a whole is usu-
ally richer than the sum of its parts and the macroscopic
properties will be absent if one looks at the constituents
separately. Complex systems evolve in a self-adaptive
manner and self-organize to form emergent behaviors due
to the interactions among the constituents of a complex
system at the microscopic level. The study of complex-
ity has been witnessed in almost all disciplines of social
and natural sciences (see, for instance, the special issue
of Nature on this topic in 2001 [1]). Most complex sys-
tems in social and natural sciences exhibit sudden phase
transitions accompanied with extreme events [2–5]. All
sorts of extreme events including natural disasters (such
as earthquakes, volcanic eruptions, hurricanes and torna-
does, catastrophic events of environmental degradation),
accidental crises (such as industrial production accidents,
nuclear leakage, reactor explosion, fire), public health af-
fairs (such as diseases and epidemics), and social security
events (such as crashes in stock markets, economic draw-
downs on national and global scales, traffic gridlock, so-
cial unrest leading to large-scale strikes and upheaval) are
called catastrophes. Extreme events or catastrophes will
impact the dynamics of complex systems heavily.

a e-mail: wxzhou@ecust.edu.cn

The catastrophes in the dynamics of complex sys-
tems can be triggered by either endogenous or exogenous
shocks. Endogenous shocks result from the cumulation
of many small fluctuations inside the system in a self-
organizing fashion [3,6,7]. In contrast, exogenous shocks
stem from extreme external changes outside the system.
Theoretically, exogenous shocks are unpredictable only
with information of the system, while endogenous shocks
are predictable in some sense since the system might ex-
hibit characteristic patterns in its self-organizing evolu-
tion to crisis. In addition, the responses of the system to
endogenous and exogenous shocks unveil usually different
dynamic behaviors, which enables us to classify different
dynamics of shocks and complex systems. The dynamical
behaviors of response are subject to the long memory ef-
fects in complex systems [7,8]. Along this line, the endoge-
nous and exogenous dynamics of many systems have been
studied, such as Internet download shocks [9–11], book
sale shocks [12–14], social shocks [15], financial volatility
shocks [16], financial crashes [17], and volatility shocks in
models of financial markets [18–20].

The constituents of a complex system and their inter-
actions form a complex network. The topological prop-
erties of complex networks have attracted a great deal
of attention in recent years, which play a crucial role in
the understanding of how the components interact with
each other to drive the collective dynamics of complex
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systems [21–24]. From the network point of view, an-
other framework have been developed by de Menezes and
Barabási to describe simultaneously the behaviors of thou-
sands of elements and their connections between the aver-
age fluxes and fluctuations [25–27]. The fluxes fi recorded
at individual nodes in transportation networks (such as
the number of bytes on Internet, the stream flow in river
networks, the number of cars on highways) are found to
possess a power-law relationship between the standard de-
viation and the mean of the fluxes [25–27],

σ = 〈f〉α, (1)

which is actually the mean-variance analysis [28]. There
are two universal classes of dynamics characterized by the
fluctuation exponent α. The fluctuation exponent of a sys-
tem is α = 0.5 if it is driven completely by endogenous
forces (such as Internet and microchip) and α = 1 if it is
driven fully by exogenous forces (such as world wide webs,
river networks and highways) [25–27]. Other applications
include external fluctuations in gene expression time se-
ries from yeast and human organisms with α = 1 [29]
and endogenous fluctuations of the variation with age of
the relative heterogeneity of health with α = 0.5 [30].
However, non-universal scaling exponents different from 1
and 0.5 have also been found, for instance in stock mar-
kets [31–33], the gene network of yeast [34], and traffic
network [35]. One is able to separate the endogenous and
exogenous components of a signal1, following the seminal
work of Barabási et al [26,27]. Furthermore, Eisler and
Kertész show that the non-universal scaling behavior of
traded values of stocks listed on the NYSE and NASDAQ
is closely related to the non-universal temporal correla-
tions in individual signals [36–40].

Several models are proposed to understand the origins
of the observed dynamical scaling laws. Models of random
diffusion on complex networks with fixed number of walk-
ers and variational number of walkers are able to interpret
the two universal classes [25]. We note that the random
diffusion model with varying number of walkers is also able
to explain non-universal dynamics with 0.5 < α < 1 [25].
Other random walk models include the inhomogeneous
impact model where the activity f equals to the number
of the visitors at a node multiplied by their impact [41]
and that based on the hypothesis that the arrival and de-
parture of “packets” follow exponential distributions and
the processing capability of nodes is either unlimited or
finite [35].

In this paper, we perform a detailed phenomenological
scaling analysis of the Chinese stock market2, following
the aforementioned framework. We employ a nice tick-
by-tick data of the stocks for all companies listed on the
Shenzhen Stock Exchange (SZSE) and the Shanghai Stock
Exchange (SHSE) from Jan. 4 to Jun. 30 of year 2006. We

1 Note that to call this separation as endogenous and exoge-
nous dynamics is controversial. However, it is beyond the scope
of the current work to clarify this terminology.

2 A brief history of the Chinese stock market and a compact
explanation of the associated trading rules can be found in
references [42,43]. See also reference [44].
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Fig. 1. (Color online) Scaling of capital flux fluctuations of
the companies listed on the SZSE (open circles) and the SHSE
(open squares) in the Chinese stock market. Panel (a) shows
the dependence of the dispersions on the average capital fluxes
for ∆t = 10 min, in which each point stands for a company.
The power-law behavior between σ10

i and 〈f10
i 〉 is over three

orders of magnitude with α10 = 0.903 ± 0.007. Panel (b) is
the same as (a) but with a time scale of ∆t = 240 min (almost
one trading day) and the scaling spans over three orders of
magnitude with α240 = 0.934 ± 0.007.

note that, the tick-by-tick data were recorded based on the
market quotes disposed to all traders in every six to eight
seconds, which are different from the ultrahigh frequency
data reconstructed from the limit-order book [43]. Because
of the reform of non-tradable shares in the Chinese stock
market, some companies are not continuously traded in
this period, which are excluded from our analysis. We are
left for analysis with 533 companies listed on the SZSE and
821 companies on the SHSE, 1354 in total. Our results are
compared with that for the American stock market and
several intriguing discrepancies are unveiled.

2 Mean-variance analysis

Obviously, all the 1354 companies have connections of
sorts forming an intangible network. Each node of the un-
derlying network stands for a company and a link between
any two nodes is drawn if the two corresponding compa-
nies have some kind of tie. However, it is not our con-
cern here how these companies are connected and what
the topology of the underlying network is. Naturally, we
may choose the cash flows of each company as the fluxes
through the corresponding node [31,36,37]. We denote
Vi(τ) the trade volume and pi(τ) the price for the trade
at recording time τ , where i represents the ith stock. For
a given time interval (t − ∆t, t], the flux of company i at
time t can be calculated as follows,

f∆t
i (t) =

∑

τ∈(t−∆t,t]

pi(τ)Vi(τ). (2)

The unit of capital flux is “Chinese Yuan (CNY) per
∆t min” throughout this work. Therefore, f∆t

i (t) is the
total turnover (or flux) of stock i in the time inter-
val (t − ∆t, t]. We can re-sample the data by choosing
∆t = 1, 2, 3, ..., n min and t = m∆t, where m = 1, 2, ...

To quantify the coupling between the average flux
〈f∆t

i 〉 and the flux dispersion σ∆t
i of the capital flux of

individual companies, the dispersion σ∆t
i is plotted in
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Fig. 2. (Color online) Dependence of the scaling exponent α
on the time scale ∆t. The open circles represent the real data,
while the open squares are for the shuffled data for comparison.

Figure 1 as a function of the mean flux 〈f∆t
i 〉 for two

different time scales ∆t = 10 min and ∆t = 240 min
(almost one trading day). As shown in Figure 1a, there
is an evident power-law scaling between σ10

i and 〈f10
i 〉

over three orders of magnitude with a dynamical exponent
α10 = 0.903 ± 0.007. Similarly, σ240

i and f240
i illustrated

in Figure 1b follow a power-law behavior spanning over
three orders of magnitude with α240 = 0.934 ± 0.007.

These α values are different from α = 0.5 (endoge-
nously driven systems) and α = 1 (exogenously driven
systems) [25–27]. Kertész and Eisler point out that sys-
tems with inhomogeneous impact will induce scaling ex-
ponents 0.5 < α < 1 [32,33]. However, the corresponding
α value of the Chinese stock market is much greater than
that of the American market at the same time scale. For
instance, α ≈ 0.88 for the Chinese stock market while
α ≈ 0.73 for the NYSE for ∆t = 2 min [32]. The results
imply that there are much more exogenous driving forces
in the Chinese stock market than in the American market.

Figure 2 shows the dependence of the scaling exponent
α∆t with respect to the time scale ∆t. We find that α∆t

increases logarithmically with the time scale ∆t,

α∆t = α∗ + γα log ∆t. (3)

A linear least squares regression gives the slope γα =
0.0101 ± 0.0002. According to the Efficient Market Hy-
pothesis [45,46], information (news) spreads very fast, and
the market responds to external forces already on a very
short time scale. The response is perfect and nearly imme-
diate, thus there cannot be any dependence on the time
scale in an efficient market. However, real markets are not
fully efficient. The longer the information spreads on the
market, the more it is interpreted and digested by the mar-
ket. Therefore, the market is more sensitive to exogenous
driving forces than endogenous forces on large time scale.
That’s the reason why α∆t increases with ∆t. For com-
parison, we also calculated the exponent α for the shuffled
data. As is shown in Figure 2, the exponent α remains con-
stant with respect to the time scale ∆t, indicating that the
correlations in the traded value series act at least as a key
factor leading to equation (3).
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Fig. 3. (Color online) Fluctuation analysis of the capital flux
time series of two stocks: Wanke (Code 000002, ◦) on the SZSE
and Shanggang (Code 600018, �) on the SHSE. The two flatter
curves are obtained from the shuffled data of Wanke (�) and
Shanggang (�). The data points for Shanggang are translated
vertically downwards by a factor of 100 for clarity.

3 Long memory in traded value time series

The temporal correlations have been extensively discussed
in many physical and financial time series [47–49]. There
are many methods proposed for this purpose [50,51],
such as spectral analysis, rescaled range analysis [52–57],
fluctuation analysis [58], detrended fluctuation analy-
sis (DFA) [59–61], wavelet transform module maxima
(WTMM) [62–66], and detrended moving average [67–71],
to list a few. We adopt the fluctuation analysis to extract
the Hurst exponent [36–40],

σ2
i =

〈
(f∆t

i (t) − 〈f∆t
i (t)〉)2〉 ∼ ∆t2Hi . (4)

The Hurst exponent Hi > 0.5 means that the time series
is correlated, Hi < 0.5 means that the time series is anti-
correlated, and for Hi = 0.5, it is uncorrelated.

Figure 3 shows the fluctuation analysis on the capital
flux time series of two stocks: Wanke (Code 000002, cir-
cles) on the SZSE and Shanggang (Code 600018, squares)
on the SHSE. The solid lines are the linear fits to the
data, which give the Hurst exponents Hi = 0.863 ± 0.003
for Wanke and Hi = 0.843 ± 0.007 for Shanggang.
The fact that the Hurst exponents of the two compa-
nies are much larger than 0.5 suggests that there is long-
range memory in the traded values of individual com-
panies. For comparison, we reshuffled the two data sets
and performed the same fluctuation analysis. we obtain
that Hi = 0.512 ± 0.005 for the shuffled data of Wanke
and Hi = 0.524 ± 0.007 for the shuffled data of Shang-
gang, which are close to H = 0.5. We stress that, ac-
cording to Figure 3, there is no evident crossover of scal-
ing regimes in the Chinese market. In contrast, there is
a clear crossover behavior from uncorrelated regime when
∆t < t× to strongly correlated regime when ∆t > t×,
where t× = 20 min and t× = 300 min for the NYSE
stocks and t× = 2 min and t× = 60 min for the NASDAQ
stocks [36–40].
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Fig. 4. (Color online) Linear dependence of the Hurst expo-
nents H on the average capital flux 〈f〉 for the real (◦) and the
shuffled data (�).

The Hurst exponents for all the 1354 stocks are esti-
mated. In Figure 4, we present as open circles the resulting
Hurst exponents for different values of 〈fi〉 after (approxi-
mately) logarithmic binning. One finds that the Hurst ex-
ponents of the traded values increase with the logarithm
of mean traded value per minute and is approximately
linear

Hi = H∗ + γH log〈fi〉, (5)

where the slope γH = 0.013 ± 0.001. This linear relation-
ship between Hi and log〈fi〉 was first reported by Eisler
and Kertész for the NYSE and NASDAQ but with larger
slopes: γH = 0.06 for the NYSE and γH = 0.05 for the
NASDAQ [36–40]. As a reference, we find that the shuf-
fled data give an uncorrelated Hurst exponent Hi ≈ 0.5
independent of the traded values. A linear regression gives
that γH = 0.003 ± 0.002 ≈ 0. Since fi is a measure of
the size or capitalization of a company listed on stock
exchanges, the relation (5) implies that the trading ac-
tivities of larger companies exhibit stronger correlations.
Moreover, the Hurst exponents for all the Chinese stocks
investigated are significantly larger than H = 0.5, while
that in the American market are close to H = 0.5 for small
companies [36–40].

There is an intriguing connection between the mean-
variance relationship and the long memory nature of the
capital flux time series. Combining (1) and (4), simple
derivation leads to the following equality [36]

γα =
dα(∆t)

d(log ∆t)
=

dHi

d(log〈fi〉) = γH . (6)

This relation is well verified by the American stock market
data [36]. Our analysis in this work for the Chinese stock
market gives further support to it. The evidence from the
American and the Chinese stock market is summarized in
Table 1.

Table 1. Verification of the relation γα = γH .

Stock market NYSE NASDAQ China

γα 0.06 ± 0.01 0.06 ± 0.01 0.0101 ± 0.0002
γH 0.06 ± 0.01 0.05 ± 0.01 0.013 ± 0.001

4 Separating endogenous and exogenous
dynamics

The macroscopic properties of complex systems may stem
from the endogenous interactions between the elements in
systems or the exogenous shocks from the environment or
both. It is important to distinguish the endogenous and
exogenous components of the system’s dynamic behav-
iors. de Menezes and coworkers have proposed a technique
to separate endogenous and exogenous dynamics of com-
plex systems [26,27]. The observed dynamics of the capital
fluxes are caused by the interplay between the endogenous
and exogenous driving forces so that the observable can
be written as the sum of two components:

fi(t) = f exo
i (t) + f endo

i (t), (7)

where fi(t) stands for the total capital flux, f exo
i (t) repre-

sents the component due to exogenous driving forces, and
f endo

i (t) is endogenous component.
In the framework of de Menezes et al. [26,27], f exo

i (t)
is the product of the proportional coefficient Ai and the
total flux of the system at time t (i.e. F (t) =

∑N
i=1 fi(t)).

The coefficient Ai is the ratio of the total capital flux of
company i during the period under investigation to the
total trading capital flux of all the companies at the same
time interval. Mathematically, we have

f exo
i (t) = AiF (t), (8)

where
Ai = 〈fi〉/〈F 〉. (9)

Combining equations (7–9), it follows that,

f endo
i (t) = fi(t) − AiF (t). (10)

By definition, we have 〈f endo
i 〉 = 0.

Following the aforementioned approach, we are able to
separate the exogenous and endogenous flux components
of the total capital fluxes. We performed the analysis for
different values of ∆t ranging from 2 min to 4500 min. The
time evolution of the total capital flux with ∆t = 2 min
of a typical stock (Wanke, Stock code 000002) and its
resultant endogenous and exogenous components are il-
lustrated in Figure 5. The results are qualitatively the
same for other stocks and other time scales. It is interest-
ing to observe that the endogenous component f endo

i (t)
exhibits high-frequency fluctuations while the exogenous
component f exo

i (t) shows low-frequency patterns. Specif-
ically, f exo

i (t) has sound intraday patterns with a period
of half a day, which is reminiscent of the similar intraday
pattern reported for the bid-ask spread of stocks in the
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Fig. 5. Separating the endogenous and exogenous contribu-
tions from the total capital fluxes. Panel (a) is the total capital
flux, panel (b) is the endogenous component, and panel (c) is
the exogenous component. There are evident intraday patterns
in the exogenous signal.

Chinese market [43]. We note that the Chinese stock mar-
ket operates in the morning and in the afternoon with a
closure from 11:30 to 13:00.

The power-law scaling (1) also holds for the two com-
ponents extracted. The scaling behaviors of the endoge-
nous and exogenous fluctuations of the stocks traded on
the SHSE (open squares) and the SZSE (open circles)
are presented in Figure 6a for time scale ∆t = 10 min
and in Figure 6b for time scale ∆t = 240 min. All the
scaling ranges span over more than three orders of mag-
nitude. For ∆t = 10 min, the exogenous scaling expo-
nent is αexo = 1 and the endogenous exponent is αendo =
0.878 ± 0.008. For ∆t = 240 min, we have αexo = 1 and
αendo = 0.884 ± 0.009. We note that αexo = 1 holds ex-
actly and is thus trivial, which can be derived rigorously
according to the linear decomposition approach described
by equations (8) and (9). It is easy to find that

〈fi〉 = 〈f exo
i 〉 = Ai〈F 〉, (11)

where 〈F 〉 is independent of i and t. On the other hand,
simple algebraic calculations show that the variance of the
exogenous component is

(σexo
i )2 = A2

i

(〈F 2〉 − 〈F 〉2) , (12)

where 〈F 2〉 − 〈F 〉2 is independent of i and t. It follows
immediately that

σexo
i ∝ 〈fi〉 ∝ Ai, (13)

from which we have αexo = 1. This analytic relation is well
verified by the mean-variance analysis shown in Figure 6.
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Fig. 6. (Color online) Power-law scaling of the endogenous and
exogenous fluctuations with respect to the averages of the two
components of stocks listed on the SHSE (open squares) and
the SZSE (open circles) in the Chinese market. Panel (a) is for
∆t = 10 min. The exogenous scaling exponent is αexo = 1 and
the endogenous exponent is αendo = 0.878 ± 0.008. Panel (b) is
for ∆t = 240 min, where αexo = 1 and αendo = 0.884 ± 0.009.
The exogenous signals are shifted vertically for better visibility.
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Fig. 7. Dependence of the endogenous scaling exponent αendo,
the exogenous exponent αexo and the partially shuffled expo-
nent on the time scale ∆t.

Figure 7 shows the dependence of the endogenous ex-
ponents αendo and the exogenous exponents αexo with re-
spect to the time scale ∆t. The trivial exogenous fluctua-
tion exponent αexo = 1 is verified numerically at different
time scales, while the scaling exponent of the endogenous
fluctuations σendo almost remains constant with minor
variations along the time scale ∆t: αendo ≈ 0.86–0.89. The
fact that αendo is independent of ∆t is completely different
from the resulting endogenous exponents reported for the
NYSE case, where the endogenous exponent varies with
the time scale [31]. The underlying mechanism of such
discrepancy between the American market and the Chi-
nese market is unclear. Possible causes include the absence
of market orders before July 2006, no short positions, the
maximum percentage of fluctuation (10%) in each day, and
the t + 1 trading mechanism which does not allow traders
to sell the stocks bought on the same day in the Chinese
stock market on the one hand and the hybrid trading sys-
tem containing both specialists and limit-order traders in
the NYSE on the other hand. In addition, we shuffled the
time series F (t), but not fi(t), and calculated the scaling
exponent, as shown in Figure 7 for comparison. We found
that the two kinds of exponents for the raw data and the
partially shuffled data are not the same.

Utilizing the separated exogenous and endogenous sig-
nals, we can obtain the ratio of the exogenous dispersion
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Fig. 8. Empirical distribution of ηi = σexo
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i ratios of
endogenous and exogenous fluctuations for two typical time
scales ∆t = 10 min (a) and ∆t = 240 min (b).

to the endogenous dispersion as follows

ηi =
σexo

i

σendo
i

. (14)

When ηi � 1, the system is driven by exogenous factors.
In contrast, the system is dominated by endogenous dy-
namics when ηi � 1. The empirical probability density
distributions p(η) for two typical time scales are shown in
Figure 8 using histograms. One can see that the ratio ηi

has unimodal distribution. In addition, it is clearly visi-
ble that the p(η) distributions observed at different time
scales are different, indicating the dynamics of the system
evolves with time scale ∆t. For time scale ∆t = 10 min,
the distribution is centered roughly around η = 0.5 and
no value of η is larger than 1, as suggested by Figure 8a.
This means that the dynamics at small time scale is dom-
inated by endogenous driving forces. When the time scale
increases to ∆t = 240 min, the peak of the ratio distribu-
tion moves to around η = 0.8 and some values of η become
larger than 1 as shown in Figure 8b, indicating that ex-
ogenous fluctuations have more impact on the system’s
dynamics.

We investigated the ratio η at different time scales.
For each time scale, we calculated the mean ratio 〈η〉 of
of four groups of stocks (see the legend of Fig. 9). Fig-
ure 9 presents the mean 〈η〉 of the ratios ηi = σexo

i /σendo
i

as a function of time scale ∆t. The 〈η〉 function exhibits
a clear upwards trend, increasing with ∆t from small val-
ues far less than 1 to large values much greater than 1.
This trend hallmarks the crossover of relative competition
of the endogenous dynamics and the exogenous dynamics
of the Chinese stock market. This phenomenon confirms
that the exogenous diving forces become stronger with
the increase of the time interval ∆t in stock markets [31].
When ∆t ≥ 1800 min (about 7.5 trading days), 〈η〉 > 1,
suggesting that the exogenous fluctuations overcome the
endogenous ones and become the dominating factor ef-
fecting the system’s behaviors. For individual stocks, the
Hurst indices of the endogenous and exogenous compo-
nents are calculated for using equation (4). It is trivial
that the exogenous Hurst indices for different stocks are
the same and we have Hexo = 0.94. For the endogenous
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function of q for ∆t = 10 min (a) and ∆t = 240 min (b).

components, the Hurst index Hendo
i < Hexo for all stocks

and the average Hurst index is 〈Hendo
i 〉i = 0.79 ± 0.053.

5 Multiscaling and multifractal analysis

The mean-variance analysis in equation (1) can be gen-
eralized to higher orders by utilizing the q-order central
moments of the capital fluxes [31],

Zi(q) =
〈
(f∆t

i (t) − 〈f∆t
i (t)〉)q

〉 ∼ 〈fi〉qα(q). (15)

When q = 2, one recovers that σ2
i = Zi(2). For q < 0,

equation (15) will enlarge the influences of small fluc-
tuations and reduce the effect of large fluctuations, and
vice versa.

The total and endogenous signals have been investi-
gated through equation (15), and the power-law relations
between the qth order central moments of the signals and
the mean total activities of the same component have been
found as well. Figure 10 shows the multiscaling exponents
α(q). It is found that α(q) also strongly depend on the
time interval ∆t according to Figure 10. There are sev-
eral differences between our results and that for the NYSE
stocks [31]. First, the α(q) function for the Chinese market
is larger than that of the NYSE market for same q on aver-
age. This is maybe due to the fact that the Chinese market
is more influenced by exogenous forces. Second, consider

3 As pointed out by an anonymous referee, the fact that
〈Hendo

i 〉i < Hexo is enough to account for the increase of η
with respect to ∆t as shown in Figure 9.
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Fig. 11. Plots of the partition function Z(q) as a function of
the time scale ∆t for three groups of stocks and different qth
moments: (a) q = −1, (b) q = 2, (c) q = 5, and (d) q = 8.

negative values of q. For ∆t = 10 min, αtot > αendo in
the Chinese market while αtot < αendo in the NYSE mar-
ket. For ∆t being a whole trading day, αtot < αendo in
the Chinese market, while αtot > αendo in the NYSE mar-
ket. Third, the difference between αtot and αendo is much
larger in the Chinese market than in the NYSE market.

Similarly, one can extend the fluctuation analysis in
equation (4) to higher orders as follows [31],

Zi(q) =
〈
(f∆t

i (t) − 〈f∆t
i (t)〉)q

〉 ∼ ∆tζi(q), (16)

which enables us to understand the multifractal nature in
the dynamics of the market. The relationship between the
exponent ζ(q) and the generalized Hurst exponent H(q)
can be described as follows,

ζi(q) = qHi(q). (17)

When q = 2, Hi = H(2) is the Hurst exponent discussed
in Section 3.

In order to have better statistics, we divided the 1354
stocks into 3 groups according to their average flux 〈f〉:
103 CNY/min < 〈f〉 � 104 CNY/min, 104 CNY/min <
〈f〉� 105 CNY/min, and 105 CNY/min < 〈f〉. Note that
103 CNY/min < 〈f〉 < 107 CNY/min for all stocks. The
multifractal analysis is performed upon each individual
group of stocks rather than individual stocks. The scal-
ing of σq is illustrated in Figure 11 for q = −1, q = 2,
q = 5, and q = 8. We can observe that there exist crossover
regimes when the value of q is large. Such crossover phe-
nomena disappear for small values of q. This feature
is again different from the NYSE case where crossover
regimes are observed for all q investigated [39]. In the
Chinese case, the crossover regime occurs with ∆t = 40–
240 min (one trading day).

Figure 12 shows the scaling exponents ζ(q) as a
function of q. All the three ζ(q) function are nonlinear
and concave showing that the three groups of stocks pos-
sess multifractal nature. Moreover, the group of companies
with higher liquidity exhibit the stronger correlations, in
agreement with the NYSE case [39].
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Fig. 12. (Color online) Dependence of the multifractal scal-
ing exponents ζ(q) with respect to order q for three groups of
companies.
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Fig. 13. Scaling dependence between the measures of trad-
ing activities and capitalizations. (a) Mean volume per trade
V with respect to average capitalization M . (b) Mean number
of trades per minute N as a function of average capitalization
M . (c) Mean flux (CNY per minute) f versus the mean capi-
talization M . (d) Mean value per trade V varying with mean
number of trades per minute N .

6 Trading activities scaling with capitalization

Following the work of Zumbach [72] and Eisler and
Kertész [32,33,37], we investigate the scaling relationship
between capitalization M , which ranges from 4.23 × 108

to 6.33× 1011 CNY, and the trading activities, which can
be measured by the mean volume per trade V , the mean
number of trades per minute N , and the mean flux per
minute f . The results are shown in Figure 13. Several
power-law scalings are observed.

The mean value per trade V versus the capitalization
M is plotted in Figure 13a, showing a significant power
law scaling. The solid line is the best fit to the data for
the whole regime, which gives a slope of 0.510 ± 0.015.
Figure 13b shows the dependence of the mean number of
trades per minute N with respect to the capitalization
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M . Least squares fits are performed for 6.3 × 108 < M �
1.6×1010 and M > 1.6×1010 respectively, which give two
exponents 0.424 ± 0.034 and 0.242 ± 0.067. The mean flux
(CNY per minute) f scales as a power law with respect to
the mean capitalization M , as is suggested in Figure 13c.
The power law relation spans over three orders of magni-
tude, with a scaling exponent 0.819 ± 0.027. These three
plots indicate that the trade activities increase with the
capitalization.

We further plot the mean volume per trade V varying
with mean number of trades per minute N in Figure 13d.
Again a power law behavior for N > 1 trades/min is ob-
served,

〈Vi〉 = 〈Ni〉β , (18)

with β = 0.802 ± 0.075. This behavior is also found in
the FTSE-100 stocks with β ≈ 1 [72], in the NYSE stocks
with β = 0.57 ± 0.09 [33,36,37], and in the NASDAQ
stocks with β = 0.22 ± 0.04 [36]. According to the “in-
homogeneous impact” model, the exponent β is related to
the scaling exponent α as follows [36,41]

α =
1
2

(
1 +

β

1 + β

)
. (19)

Substituting β = 0.802 into equation (19), we obtain
α = 0.723, which is much smaller than the actual value.
This discrepancy might be due to the fact that β is only
found for larger stocks while α is obtained for all the
stocks, and/or the inhomogeneous impact model, from
which equation (19) is deduced, is too simplified for stock
markets [38]. Indeed, we find that the power-law scaling
between 〈N〉 and 〈M〉 is not unambiguous. Suppose that
〈V 〉 ∼ 〈M〉β1 and 〈N〉 ∼ 〈M〉β2 . It follows immediately
that 〈V 〉 ∼ 〈N〉β1/β2 such that β = β1/β2. This equality
does not hold either in the Chinese stock market.

7 Conclusion

We have investigated the endogenous and exogenous dy-
namics of 1354 stocks traded in the Chinese stock mar-
ket. These companies and the capital fluxes (proxied by
traded values per unit time) among them are considered
as a complex network. A non-universal scaling exponent
α of fluctuations different from 1/2 and 1 is found with
mean-variance analysis of the fluxes of different stocks.
The scaling exponents at different time scales of the Chi-
nese stocks are much larger than that of the NYSE stocks,
suggesting that the Chinese market is influenced more
heavily by the exogenous driving forces than the Amer-
ican market. The scaling exponent α increases linearly as
the logarithm of time scale. The increasing of α also indi-
cates that, for short time scale, the dynamics of the stock
market is dominated by endogenous fluctuations, while
the exogenous fluctuations overcome the endogenous ones
for large time scales. The fluxes signals can be separated
into endogenous and exogenous components. Both com-
ponents exhibit nice fluctuation scalings whose exponents
αendo and αexo are independent of the time scale. The long
memory existing in the capital flux time series is investi-
gated by applying the fluctuation analysis. Our analysis

on the Chinese stock market provides further evidence to
the phenomenological observation that the Hurst expo-
nent Hi increases logarithmically with the mean capital
flux 〈fi〉. The empirical rule that γα = γH is verified.

We have also performed multiscaling analysis and
multifractal analysis, as natural generalizations of the
mean-variance analysis and the fluctuation analysis. The
Chinese stock market exhibits multiscaling behavior and
multifractal features. However, the multiscaling behavior
and multifractal nature of the capital fluxes in the Chi-
nese stock market are different in several aspects from
that in the American market. The main difference is that
crossover regime in the scalings is absent for small values
of q in the Chinese market.

In order to test the inhomogeneous impact model, the
relationships among various measures of trading activi-
ties and capitalizations have been studied in the paper.
A clear power law behavior is found between the mean
value per trade and the capitalization, as well as the mean
capital flux and the capitalization. However, the interpre-
tational power of the inhomogeneous impact model upon
the Chinese stock market is not confirmed. Therefore, the
underlying mechanism of the empirical observations is still
open.
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